36 research outputs found

    Feasibility and stability in large Lotka Volterra systems with interaction structure

    Full text link
    Complex system stability can be studied via linear stability analysis using Random Matrix Theory (RMT) or via feasibility (requiring positive equilibrium abundances). Both approaches highlight the importance of interaction structure. Here we show, analytically and numerically, how RMT and feasibility approaches can be complementary. In generalised Lotka-Volterra (GLV) models with random interaction matrices, feasibility increases when predator-prey interactions increase; increasing competition/mutualism has the opposite effect. These changes have crucial impact on the stability of the GLV model.Comment: Manuscript is 8 pages long, containing 4 figures. Pages 9 to 25 is the Supplemental Materia

    Species reintroduction and community-level consequences in dynamically simulated ecosystems

    Get PDF
    Global biodiversity, and its associated ecosystem services, are threatened due to species extinctions. Reintroducing locally extinct species may be a partial solution to this problem. However, the success and possible consequences of any artificial reintroduction will depend on its ecological community, and the reaction of that community to the species' extinction and reintroduction. Mathematical models can offer useful insights by identifying the key features of communities and reintroduced species most likely to result in successful reintroductions. Here we simulated extinctions and reintroductions for a range of theoretical food webs generated using an established bioenergetics model. This allows the probability of successful reintroductions to be quantified as a function of two important ecological factors: the connectance of the food web, and of the time between extinctions and reintroductions. Reintroduction success is measured across an ensemble of 1796 simulated communities, with connnectances of 0.05, 0.15 and 0.3, using three criteria: presence of the reintroduced species in the final community, unchanged species richness in the final community compared to the pre-extinction persistent community and the complete restoration of the community (including both species richness and equilibrium biomass distributions). Although only 12 reintroduced species fail to re-establish according to minimal criteria, the process of extinction and reintroduction frequently has a large effect on the community composition. Increasing time to reintroduction increases both the probability of species loss, and equilibrium biomass change in the community. Proportionally, these community-level impacts occur more frequently when the reintroduced species is a primary producer or top predator. These results indicate that ignoring broader measures of reintroduction success could seriously underestimate the impact of reintroductions on the ecological community. These quantitative results can be compared to empirical literature and may help reveal which factors are most important to the success of reintroductions

    Bacteriophages limit the existence conditions for conjugative plasmids

    Get PDF
    Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome

    Ecology and evolution of antimicrobial resistance in bacterial communities

    Get PDF
    Accumulating evidence suggests that the response of bacteria to antibiotics is significantly affected by the presence of other interacting microbes. These interactions are not typically accounted for when determining pathogen sensitivity to antibiotics. In this perspective, we argue that resistance and evolutionary responses to antibiotic treatments should not be considered only a trait of an individual bacteria species but also an emergent property of the microbial community in which pathogens are embedded. We outline how interspecies interactions can affect the responses of individual species and communities to antibiotic treatment, and how these responses could affect the strength of selection, potentially changing the trajectory of resistance evolution. Finally, we identify key areas of future research which will allow for a more complete understanding of antibiotic resistance in bacterial communities. We emphasise that acknowledging the ecological context, i.e. the interactions that occur between pathogens and within communities, could help the development of more efficient and effective antibiotic treatments

    Variable bites and dynamic populations : new insights in Leishmania transmission

    Get PDF
    Leishmaniasis is a neglected tropical disease which kills an estimated 50,000 people each year, with its deadly impact confined mainly to lower to middle income countries. Leishmania parasites are transmitted to human hosts by sand fly vectors during blood feeding. Recent experimental work shows that transmission is modulated by the patchy landscape of infection in the host's skin, and the parasite population dynamics within the vector. Here we assimilate these new findings into a simple probabilistic model for disease transmission which replicates recent experimental results, and assesses their relative importance. The results of subsequent simulations, describing random parasite uptake and dynamics across multiple blood meals, show that skin heterogeneity is important for transmission by short-lived flies, but that for longer-lived flies with multiple bites the population dynamics within the vector dominate transmission probability. Our results indicate that efforts to reduce fly lifespan beneath a threshold of around two weeks may be especially helpful in reducing disease transmission

    The effect of sleep restriction, with or without high-intensity interval exercise, on behavioural alertness and mood state in young healthy males

    Get PDF
    Mood state and alertness are negatively affected by sleep loss, and can be positively influenced by exercise. However, the potential mitigating effects of exercise on sleep-loss-induced changes in mood state and alertness have not been studied comprehensively. Twenty-four healthy young males were matched into one of three, 5-night sleep interventions: normal sleep (NS; total sleep time (TST) per night = 449 ± 22 min), sleep restriction (SR; TST = 230 ± 5 min), or sleep restriction and exercise (SR + EX; TST = 235 ± 5 min, plus three sessions of high-intensity interval exercise (HIIE)). Mood state was assessed using the profile of mood states (POMS) and a daily well-being questionnaire. Alertness was assessed using psychomotor vigilance testing (PVT). Following the intervention, POMS total mood disturbance scores significantly increased for both the SR and SR + EX groups, and were greater than the NS group (SR vs NS; 31.0 ± 10.7 A.U., [4.4–57.7 A.U.], p = 0.020; SR + EX vs NS; 38.6 ± 14.9 A.U., [11.1–66.1 A.U.], p = 0.004). The PVT reaction times increased in the SR (p = 0.049) and SR + EX groups (p = 0.033) and the daily well-being questionnaire revealed increased levels of fatigue in both groups (SR; p = 0.041, SR + EX; p = 0.026) during the intervention. Despite previously demonstrated physiological benefits of performing three sessions of HIIE during five nights of sleep restriction, the detriments to mood, wellness, and alertness were not mitigated by exercise in this study. Whether alternatively timed exercise sessions or other exercise protocols could promote more positive outcomes on these factors during sleep restriction requires further research

    t4 Workshop Report: Integrated Testing Strategies (ITS) for Safety Assessment

    Get PDF
    Integrated testing strategies (ITS), as opposed to single definitive tests or fixed batteries of tests, are expected to efficiently combine different information sources in a quantifiable fashion to satisfy an information need, in this case for regulatory safety assessments. With increasing awareness of the limitations of each individual tool and the development of highly targeted tests and predictions, the need for combining pieces of evidence increases. The discussions that took place during this workshop, which brought together a group of experts coming from different related areas, illustrate the current state of the art of ITS, as well as promising developments and identifiable challenges. The case of skin sensitization was taken as an example to understand how possible ITS can be constructed, optimized and validated. This will require embracing and developing new concepts such as adverse outcome pathways (AOP), advanced statistical learning algorithms and machine learning, mechanistic validation and “Good ITS Practices”.JRC.I.5-Systems Toxicolog

    Development of a Kemp\u27s Ridley Sea Turtle Stock Assessment Model

    Get PDF
    We developed a Kemp’s ridley (Lepidochelys kempii) stock assessment model to evaluate the relative contributions of conservation efforts and other factors toward this critically endangered species’ recovery. The Kemp’s ridley demographic model developed by the Turtle Expert Working Group (TEWG) in 1998 and 2000 and updated for the binational recovery plan in 2011 was modified for use as our base model. The TEWG model uses indices of the annual reproductive population (number of nests) and hatchling recruitment to predict future annual numbers of nests on the basis of a series of assumptions regarding age and maturity, remigration interval, sex ratios, nests per female, juvenile mortality, and a putative ‘‘turtle excluder device effect’’ multiplier starting in 1990. This multiplier was necessary to fit the number of nests observed in 1990 and later. We added the effects of shrimping effort directly, modified by habitat weightings, as a proxy for all sources of anthropogenic mortality. Additional data included in our model were incremental growth of Kemp’s ridleys marked and recaptured in the Gulf of Mexico, and the length frequency of stranded Kemp’s ridleys. We also added a 2010 mortality factor that was necessary to fit the number of nests for 2010 and later (2011 and 2012). Last, we used an empirical basis for estimating natural mortality, on the basis of a Lorenzen mortality curve and growth estimates. Although our model generated reasonable estimates of annual total turtle deaths attributable to shrimp trawling, as well as additional deaths due to undetermined anthropogenic causes in 2010, we were unable to provide a clear explanation for the observed increase in the number of stranded Kemp’s ridleys in recent years, and subsequent disruption of the species’ exponential growth since the 2009 nesting season. Our consensus is that expanded data collection at the nesting beaches is needed and of high priority, and that 2015 be targeted for the next stock assessment to evaluate the 2010 event using more recent nesting and in-water data

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Identification and quantification of heteroscedasticity in stock–recruitment relationships

    No full text
    Nonconstant variance (heteroscedasticity) in the stock–recruitment (S-R) relationship is proposed as an important factor in sustainable fisheries management, but its reliable estimation from noisy populations is problematic. We developed methods for both frequentist and Bayesian approaches to test whether we can accurately estimate the degree of heteroscedasticity in 90 published S-R populations. We estimated the confidence interval for the heteroscedastic regression model via a parametric bootstrap approach and the credible interval for the Bayesian method via a Markov chain Monte Carlo sampling algorithm. We found strong evidence of negative heteroscedasticity in several stocks, regardless of the statistical paradigm, the details of density dependence, and the methods used to generate the original populations. This statistical framework, together with its associated freely available software, provides an efficient and reliable setting for assessing heteroscedasticity of the S-R relationship in fisheries. </jats:p
    corecore